The repression of nuclear factor I/CCAAT transcription factor (NFI/CTF) transactivating domain by oxidative stress is mediated by a critical cysteine (Cys-427).
نویسندگان
چکیده
The activity of the nuclear factor I/CCAAT transcription factor (NFI/CTF) is negatively regulated by oxidative stress. The addition of relatively high (millimolar) H(2)O(2) concentrations inactivates cellular NFI DNA-binding activity whereas lower concentrations can repress NFI/CTF transactivating function. We have investigated the mechanism of this regulation using Gal4 fusion proteins and transfection assays. We show that micromolar H(2)O(2) concentrations repress the transactivating domain of NFI/CTF in a dose-dependent manner and are less or not active on other transcription factors' transactivating domains. Studies using deletions and point mutations pointed to the critical role of Cys-427. Indeed, when this cysteine is mutated into a serine, the repression by H(2)O(2) is totally blunted. Mutation of other cysteine, serine and tyrosine residues within the transactivating domain had no clear effect on the repression by H(2)O(2). Finally, treatment of cells with the thiol-alkylating reagent N-ethylmaleimide leads to a decrease in the transactivating function, which is dependent on Cys-427. This study shows that transactivating domains of transcription factors can constitute very sensitive targets of oxidative stress and highlights the critical role of these domains.
منابع مشابه
Nuclear factor I/CCAAT box transcription factor trans-activating domain is a negative sensor of cellular stress.
The adaptive response to cellular stress requires the reprogramming of gene expression. So far, research has focused on induction mechanisms; several transcription factors activated by cellular stress have been shown to trigger the induction of repair and detoxification enzymes. Using the hepatoma cell line HepG2, we report that the trans-activating function of the nuclear factor I/CCAAT box tr...
متن کاملAn autoregulatory loop controlling CYP1A1 gene expression: role of H(2)O(2) and NFI.
Cytochrome P450 1A1 (CYP1A1), like many monooxygenases, can produce reactive oxygen species during its catalytic cycle. Apart from the well-characterized xenobiotic-elicited induction, the regulatory mechanisms involved in the control of the steady-state activity of CYP1A1 have not been elucidated. We show here that reactive oxygen species generated from the activity of CYP1A1 limit the levels ...
متن کاملCloning and functional analysis of spliced isoforms of human nuclear factor I-X: interference with transcriptional activation by NFI/CTF in a cell-type specific manner.
Previous studies of the epithelial specificity of the human papillomavirus type 16 (HPV-16) enhancer pointed out an important role of nuclear factor I (NFI). In epithelial cells, NFI proteins are derived from the NFI-C gene and referred to as NFI/CTF. In contrast, fibroblasts, where the enhancer is inactive, express high levels of NFI from the NFI-X gene. To compare NFI-C and NFI-X derived tran...
متن کاملThioltransferase (glutaredoxin) reactivates the DNA-binding activity of oxidation-inactivated nuclear factor I.
The reversible oxidative inactivation of transcription factors has been proposed to be important in cellular responses to oxidant stress and in several signal transduction pathways. The nuclear factor I (NFI) family of transcription factors is sensitive to oxidative inactivation due to the presence of a conserved, oxidation-sensitive cysteine residue within the NFI DNA-binding domain. Here we s...
متن کاملNuclear factor I/thyroid transcription factor 1 interactions modulate surfactant protein C transcription.
Surfactant protein C (SP-C; Sftpc) gene expression is restricted to pulmonary type II epithelial cells. The proximal SP-C promoter region contains critical binding sites for nuclear factor I (NFI) and thyroid transcription factor 1 (TTF-1; also called Nkx2.1). To test the hypothesis that NFI isoforms interact with TTF-1 to differentially regulate SP-C transcription, we performed transient trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 348 Pt 1 شماره
صفحات -
تاریخ انتشار 2000